
Protein Folding Networks and Levinthal’s Paradox

Virtually all biological processes in a living cell in-
volve proteins. These long amino-acid chains fold into
well-defined three dimensional structures whose phys-
ical (chemical) properties are responsible for the pro-
tein’s function. Thus, understanding and predicting
protein structure is of great interest in both unveil-
ing the way cells work, and designing new, desired
protein functions.

Shortly after the first spatial structure of a protein
has been experimentally determined, the question of
how freshly assembled amino-acid chains can fold into
these structures in biologically relevant time has been
raised. In a lecture in 1969 C. Levinthal pointed out
that a protein made of 150 amino-acids has around
10300 different conformations. A complete sampling
of this whole space would take several times the age of
the universe even for chains as short as 40 monomers
[1]. Levinthal conjectured that proteins have to fol-
low well-determined folding pathways that guide them
to their final, stable conformations. One consensus
in protein folding today is that most functional pro-
teins have energy landscapes with funnel structure:
they fold by hopping through small barriers separat-
ing lower and lower local minima. However, the ques-
tion remains: how did Nature evolve proteins that
have favorable energy landscapes? Sampling all pos-
sible amino-acid sequences while selecting ones capa-
ble of fast and reliable folding poses similar problems
as Levinthal’s original paradox, only stretched out to
evolutionary time-scales.

We are currently working towards demonstrating
that configuration spaces of large physical systems
(such as peptide chains, proteins or atomic clusters)
have a few generic properties that hold the answer to
when and how funneled landscapes emerge. A use-
ful way to define discrete configuration spaces is to
look at them as complex networks: configurations are
nodes of the network, while an elementary step the
system can take from one configuration to another is
a link. Our aim is to study, characterize and model
these very large networks in order to gain insight into
properties of the dynamics of motion in configuration
space.

A few recent papers provided an initial insight on
the topology of these networks. Scala et al [2] con-
structed the configuration network of a 15 component
model polymer chain on a lattice, using a few allowed
moves as links. They have found that the graph has
the small-world property: in a network of N nodes
the shortest paths between configurations are of the
order of log N . More importantly, the also found that
the connectivity or degree distribution of the network
is binomial: all configurations have a similar number

of nearest neighbors.
Interested in the generality of the configuration

network properties found by Scala et. al., we con-
structed a simple robot arm model system. This arm
is made of equal length rods connected through joints
that allow for three distinct angles (Fig. 1). Two con-
figurations are connected if the change of only one
joint angle (elementary step) to a neighboring posi-
tion can inter-convert them (blue lines on 1). This
configuration network has the same general proper-
ties as the network studied by Scala et.al., with a
characteristic value for the degrees and short paths.
Recently, Rao and Caflisch [3] mapped out the con-

Figure 1: A simple robot arm model: n is the number
of joints, blue links indicate the configuration network
for n = 1 and 2. The inset shows the network for
n = 4, 5.

formational space of a small, 20-residue designer pro-
tein, beta3s, using implicit solvent molecular dynam-
ics simulations (Fig. 2). In order to allow the pro-
tein to sample the configuration space efficiently, they
used a temperature at which the chain goes back and
forth between native and denaturated states. They
have found that the emerging configuration network
is scale-free, with a power-law degree distribution of
exponent γ = −2. Thus, this landscape is domi-
nated by a few hubs: configurations with a signifi-
cantly higher number of neighbors than average. An
intriguing finding of the paper is that the scale-free
nature of the configuration space persists even for a
chain obtained via random reshuffling of the origi-
nal amino-acid sequence. This seems to indicate that
the scale-free topology of the space is not specific
to beta3s, rather it is generic to amino acid chains.
Moreover, non-homogeneous configuration networks
are also reported by Doye and Mason [4]. They map
the energy landscapes of small Lennard-Jones atomic
clusters into networks using the local minima of the
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Figure 2: Beta3s conformation space network. From
[3]. Inset: degree distribution of the network.

system as nodes and saddle-points between to minima
as links: a coarse-graining of the complete configura-
tion network. They also find graphs with power-law
degree distributions.

These results seem to contradict our observation
that configuration networks are more or less homoge-
neous. The scale-free nature of the network mapped
out by Rao and Caflisch, however, would resolve the
Levinthal paradox. Scale-free networks are known
to have an average shortest path on the order of
log(log N), thus even a system with 10300 conforma-
tions is typically less than 10 hops away from it’s
minimum (ultra-small)! The questions is thus how to
marry the two contradicting observations.

Recent results on gradient networks provide a sim-
ple framework to understand these seemingly contra-
dicting results. Toroczkai et. al. [5] studied net-
work flows, where flows are generated by gradients
of a scalar field distributed on nodes of a network.
A gradient network can be defined on any substrate
graphs with a scalar assigned to it’s nodes: the links
of the gradient network indicate the direction of the
largest local gradient at each node on the substrate
network. They showed that for a random distrib-
ution of the scalars among the nodes, a variety of
relatively homogeneous substrate networks (Erdős–
Rényi, Small–World, etc.) give rise to gradient net-
works with scale-free in-degree distribution. Thus,
scale-free flow structures arise naturally even on ho-
mogeneous substrate networks via selection of links
supporting significant amounts of flow.

The discrepancy between homogeneous configura-
tion networks (Scala et al, robot arm model) and the
results of Rao and Caflisch can be easily resolved in

light of this result [6]. The topology of configuration
spaces is complemented by the energies of the con-
figurations, together they determine the landscape
under configurational motion. Changes in the pro-
tein conformation are due to the energy differences
along the links of the substrate (i.e., configuration)
network, thus a molecular dynamics simulation could
sample the whole space in an unbiased manner at in-
finite temperatures only. At lower temperatures the
network uncovered by the system would resemble the
gradient network. Thus the scale-free network of Rao
and Caflisch is not the actual configuration network
of the protein, it’s a biased sampling of its links. It
nonetheless characterizes the landscape responsible
for the folding. What is a bit harder, is to find the
correct correlations between the topology of the con-
figuration network and the energy values associated
to the nodes. We have just solved this problem [6],
and this has lead us to the recovery of the γ = −2
exponent found by the molecular simulations of Rao
and Calfish.

A more difficult problem is to understand how
shortcuts of configuration networks are distributed
and how they arise. We hope that once the nature of
shortcuts is understood, small alterations to a com-
plex biological system (such as docking of a small
molecule) could alter the configuration space with
new shortcuts to facilitate more desired conforma-
tional dynamics, such as faster folding. Aside from
the challenging task of proposing such an experiment,
perhaps shortcuts could be used as computational
tricks in lengthy simulations. The slightly altered
system could quickly move close to a desired con-
figuration and evolve from there after the change is
undone.
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