
PHYSICAL REVIEW E JUNE 2000VOLUME 61, NUMBER 6
Physics of the rhythmic applause
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We report on a series of measurements aimed to characterize the development and the dynamics of the
rhythmic applause in concert halls. Our results demonstrate that while this process shares many characteristics
of other systems that are known to synchronize, it also has features that are unexpected and unaccounted for in
many other systems. In particular, we find that the mechanism lying at the heart of the synchronization process
is the period doubling of the clapping rhythm. The characteristic interplay between synchronized and unsyn-
chronized regimes during the applause is the result of a frustration in the system. All results are understandable
in the framework of the Kuramoto model.

PACS number~s!: 87.19.2j, 89.90.1n, 05.45.Xt, 05.65.1b
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I. INTRODUCTION

Everybody has experienced after a good performance
audience showing its appreciation with a thunderous s
chronized clapping. This is suddenly arising from the i
tially incoherent clapping of individuals and might disappe
and reappear again several times during the applause.
synchronization process in the concert hall offers a wond
ful example of social self-organization, and it is believed
be a human scale example of synchronization processes
served in numerous systems in nature. As detailed in@1#,
spontaneous synchronization occurs in many biological
sociological systems: fireflies in Southeast Asia synchron
their flashes; crickets synchronize their chirping; neural c
of the brain synchronize voltage fluctuations; pacema
cells in the heart synchronize their fire; women living t
gether for long times find their menstrual cycle synch
nized.

The accepted way of modeling a synchronization proc
is to consider coupled nonlinear oscillators. Understand
the synchronization process of coupled oscillators is an
problem in physics, mathematics, and theoretical biology@2#.
It is believed that the problem goes back to Huygens, w
realized the synchronization of pendulum clocks hanging
gether on a wall. While the synchronization of identic
coupled oscillators interacting with phase-minimizing inte
actions is obvious, the problem is nontrivial if one consid
a population of nonidentical oscillators. Depending on
strength and type of the interaction, and the dispersion of
oscillators frequencies, synchronization might, or might n
appear. For biological populations it is crucial to consid
nonidentical internal frequencies, since individuals are
rigorously equivalent. In this way in order to understand s
chronization in biological or sociological systems we have
PRE 611063-651X/2000/61~6!/6987~6!/$15.00
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consider the more complex problem of coupled nonident
oscillators.

For a theoretical study of coupled oscillator models ma
interaction types were studied. Considering mathematic
coupled maps@3# the problem became interesting most
from the viewpoint of dynamical systems and chaos. Sin
most of the coupling processes in nature are through pu
like interactions~firing of neurons, flashes of fireflies, clap
ping, etc.! a very realistic pulselike coupling is considered
the integrate-and-fire-type models@4,5#. In these models the
firing of an oscillator results in a phase jump of all oth
oscillators. Because the phase evolution of each oscillato
considered nonlinear in time, under very general conditio
the jumping process leads to synchronization. Interacti
continuously present in time and thus memory effects
considered in the models introduced by Winfree@6# and
Kuramoto and Nishikava@7#. In these later models we hav
phase-difference-minimizing interactions between globa
coupled rotators. For a suitably chosen interaction form,
problem becomes exactly solvable and leads to very inter
ing results.

Although at first the integrate-and-fire-type models lo
the most promising to understand the synchronization
dynamics of the rhythmic applause, we will argue in favor
the phase-coupled Kuramoto model. According to our int
pretation of the phenomenon in the appearance of rhyth
applause, memory effects are crucial. By considering
pulselike interaction of integrate-and-fire models, this imp
tant ingredient is totally neglected. In contrast, the contin
ous phase coupling in the Kuramoto model offers a first
proach to dealing with the relevant memory effects.

The purpose of our present paper is to reveal some in
esting and new peculiarities of the rhythmic applause, an
understand the observed phenomenon in the framewor
6987 ©2000 The American Physical Society
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6988 PRE 61NÉDA, RAVASZ, VICSEK, BRECHET, AND BARABÁSI
the well-known Kuramoto model. Of course, in the conte
of rhythmic applause the Kuramoto model should be view
as an abstract theoretical representation of the situation,
taining the minimum number of assumptions already allo
ing the kind of synchronization exhibited by the spectato
We mention that the main results of our study were brie
discussed in a very short recent paper@8#. Here we will con-
sider a much more detailed and argumented presentatio

II. THE KURAMOTO MODEL

In order to construct a simple physical model for synch
nization, one can take the population of nonidentical rotat
globally coupled through phase-difference-minimizing int
actions. Synchronization in this system is not obvious at
and triggered the interesting studies of Winfree@6#. He found
that mutual synchronization is possible or not, depending
the relation between the oscillator frequency distribut
width ~dispersion! and the strength of coupling. Later, Kura
moto proposed and, together with Nishikava, exactly sol
@7# an elegant reformulation of Winfree’s model.

In the Kuramoto model we haveN rotators, each of them
described by itsfK phase. The rotators have ag(v) distri-
bution of theirvK natural frequencies. Every rotator interac
with all the other ones via phase-difference-minimizi
terms,

WK
int5

K

N (
j 51

N

sin~f j2fK!. ~1!

The N coupled differential equations describing the ov
damped oscillator dynamics are

dfK

dt
5vK1

K

N (
j 51

N

sin~f j2fk!. ~2!

Mathematically the synchronization level will be charact
ized by an order parameter,q, defined at any time moment a

q5U1

N (
j 51

N

eifKU. ~3!

The maximal possible valueq51 corresponds to total syn
chronization, the case 0,q,1 to partial synchronization
while for q50 there is no synchronization at all in the sy
tem.

In the N→` thermodynamic limit of the equilibrium dy
namics (t→`, so initial transient effects are lost! Kuramoto
and Nishikava proved the existence of aKc critical coupling.
For a Gaussian distribution of the oscillators’ natural f
quencies, characterized by aD dispersion, they got@7#

Kc5A 2

p3
D. ~4!

For K<Kc the only possible solution givesq50 ~no syn-
chronization! while for K.Kc a stable solution withqÞ0
appears. Thus, the main result is that for a population
globally coupled nonidentical oscillators a partial synchro
zation of the phases is possible whenever the interac
among oscillators exceeds a critical value. By adopting
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Kuramoto model for biological populations, the observ
synchronization phenomena are conceptually understood

III. RHYTHMIC APPLAUSE VERSUS THE KURAMOTO
MODEL: OPEN QUESTIONS

As we discussed in the Introduction, it is convenient
use the Kuramoto model in order to describe the dynamic
the rhythmic applause. If the Kuramoto model is applica
to the phenomenon there could be two cases:~i! the average
coupling between the spectators is smaller than the crit
one and no synchronization appears, and~ii ! for larger cou-
pling than the critical one synchronization would gradua
evolve. The critical coupling~as discussed in Sec. II! is gov-
erned by the dispersion of the spectators’ natural clapp
frequencies~4!.

Studying the rhythmic applause carefully, one might im
mediately raise many questions which are not obviously
swered within a simple application of the Kuramoto mod
such as the following.

~i! Usually at the beginning of the applause there is a lo
‘‘waiting’’ time without any synchronization, and with no
increase in the order parameter. Partial synchroniza
evolves suddenly after that and achieves its maximal valu
a short time. This should not be the case if we are in theK
.Kc limit. One would expect in this limit a continuous in
crease in the order parameter right from the beginning of
applause.

~ii ! Why is synchronization already achieved lost afte
time, and why might it reappear again? Losing synchroni
tion should not happen in theK.Kc limit.

In order to understand this phenomenon more deeply
to answer the questions that are not obvious within
framework of the Kuramoto model, we first considered
experimental study.

IV. EXPERIMENTAL STUDY

Two main experiments were considered.
Experiment I. The applause after many good theater a

opera performances~in Romania and Hungary! was re-
corded, digitized, and analyzed in several aspects. Rec
ings both by a microphone hanging from the ceiling of t
concert hall and in the neighborhood of randomly selec
individuals were considered.

Experiment II.Well-controlled clapping experiments wer
carried out on a group of 73 high school students. We a
investigated the clapping frequencies of one individual d
ing a one week period.

A. Experimental method

1. Experiment I

By digitizing the signal@Fig. 1~a!# we obtained a record
ing of fluctuating voltage with both positive and negati
values. The zero level~as the mean-signal level! was deter-
mined and the square of the signal relative to this level w
computed@Fig. 1~b!#. This signal would roughly correspon
to the noise intensity variation, but due to the short sampl
time it is definitely not the one that our human percepti
can follow. The average over a relatively short-time peri
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PRE 61 6989PHYSICS OF THE RHYTHMIC APPLAUSE
('0.2 s! was considered and we got the signal@Fig. 1~c!#
that describes well the useful noise intensity variations d
ing the applause. Even at a first glance one can easily de
the periodic noise intensity variation during synchroniz
clapping.

This short-time averaged signal was analyzed in sev
aspects.

~1! A long-time averaged noise intensity was compu
by averaging the signal on a time interval of approximat
3 s.

~2! An experimentally computable order parameterqexp
was calculated. This order parameter was defined in a v
analogous way with theq order parameter~3! in the Kura-
moto model. At each time stepqexp is calculated as the
maximum of the normalized correlation between thes(t)
signal and a harmonic function

qexp~ t !5max$T,f%H E
t2T

t1T

s~ t !sin~2p/T1f!dt

E
t2T

t1T

s~ t !dt
J ~5!

~in the above formula the values off should span all pos
sible initial phases between 0 and 2p, and T should vary
between two reasonably chosen limiting values,Tmin and
Tmax). TakingTmin50.1 s andTmax55 sqexp was numeri-
cally computed.

~3! Finally, for recordings taken in the neighborhood
one spectator one can observe that the short-time aver
noise intensity curves have some evident local maximu
corresponding to the clapping of the individual. In this ca
we computed the time interval between the clearly dis
guishable groups of maxima as a function of time. This w
characterize the clapping frequency of the chosen spect

FIG. 1. Digitized global signal, voltage as a function of time~a!.
The processed signals:~b! and~c!. In ~b! we have the square of th
signal from~a!, relative to the calculated average voltage level.
~c! we present the short-time moving average~window size: 0.2 s!
of the signal from~b!.
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2. Experiment II

In our well controlled clapping experiments we studi
the distribution function for the natural clapping frequen
of noninteracting students. Separated by the rest of
group, students were first encouraged to clap in the man
they would right after a good performance~mode-I clap-
ping!. Second, they were asked to clap in the manner t
would do during synchronized clapping~mode-II clapping!.
With one student we also performed investigations on b
ways of clapping, sampling 100 times during a one-we
period.

B. Experimental results

1. Experiment I

A characteristic part of the global applause where the s
chronization is formed and destroyed is presented as a f
tion of time in Fig. 2~a!. In Fig. 2~b! we present simulta-
neously the recordings made in the vicinity of one specta
The order parameter variation computed by Eq.~5! from the
global signal is plotted in Fig. 2~d!. In Fig. 2~c! we show the
variation of the long-time moving average~window size: 3 s!
for the global noise intensity. Finally, in Fig. 2~e! we present
the computed clapping period as a function of time for t
chosen individual. One can notice immediately that dur
the rhythmic applause~central part! the long-time averaged
noise intensity has a clear minimum, the order parameter
a maximum~as expected!, and the clapping period of an
individual presents also a maximum. These results are st
and qualitatively consistent with all the 47 recordings w
have studied.

2. Experiment II

For the normalized distribution of the natural clappin
frequencies of the group of 73 students the results are g
in Fig. 3. With a continuous line we plotted the distributio
obtained for mode-I clapping and with a dashed line we p
ted the results for mode-II clapping. Both distributions a
roughly Gaussian. The maximum of the first distribution
located at a higher frequency~approximately two times
higher! and the peak is wider than the one for mode-II cla
ping. Calculating the dispersion for the two distributions, w
got both the dispersion~D! and the relative dispersion (Dr

5D/v̄) for mode-II clapping smaller,

DI

DII
'2.5, ~6!

DI
r

DII
r

'1.3. ~7!

Computing the normalized distribution for the ratio
mode-I to mode-II clapping for each individual we got also
one-peak distribution centered around the value of 2~Fig. 4!.

The normalized distribution of mode-I and mode-II cla
ping obtained from 100 measurements on one individ
~Fig. 5! shows a behavior similar to the one presented in F
4. We plotted with a continuous line the normalized dist
bution obtained for mode-I clapping and with a dashed l
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FIG. 2. Short-time averaged
global ~a! and local~b! signals as
a function of time. The computed
long-time averaged signal~win-
dow size: 3 s! is presented in~c!,
the experimental order paramete
on ~d!, and the clapping period o
the chosen individual in~e!.
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we plotted the one for mode-II clapping. The distribution
possible natural frequencies during mode-II clapping is ag
sharper than the one for mode-I clapping. Again, the loca
of the maxima for the distribution of mode-I clapping
roughly double the one for mode-II clapping.

V. DISCUSSION

From the controlled clapping experiments~Figs. 3–5! we
conclude that spectators can clap with two very distinct cl
ping modes. During rhythmic applause they shift from th
original high frequency mode-I clapping to the low fr
quency mode-II clapping. The above picture is totally su
ported by the clapping rhythm of one individual during t
rhythmic applause@Fig. 2~e!#. During this period-doubling

FIG. 3. Normalized distribution functions for mode-I~continu-
ous line! and mode-II~dashed line! clapping frequencies on a sam
pling of 73 high-school students.
f
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n

-
r

-

process the dispersion~width! of the natural clapping fre-
quency distribution is decreased roughly to half. This is
very important step in understanding the phenomenon fr
the viewpoint of the Kuramoto model. From the Kuramo
model we learned that the critical couplingKc for synchro-
nization is directly proportional with the dispersion of th
frequency distribution of the oscillators~4!. When the dis-
persion is decreased the value of the critical coupling
creases, too. When the clapping starts the spectators
very enthusiastically and with high frequencies~mode-I clap-
ping!. The frequency distribution is wide and the value of t
critical coupling is large. The coupling between the spec
tors is lower than the critical value and synchronization
not possible. The spectators subconsciously realize this~or
already subconsciously know the ‘‘game’’ of the rhythm

FIG. 4. Normalized distribution functions for the ratio of th
frequencies of mode-I and mode-II clapping~sampling on 73 high-
school students!.



s
he
d

e
st?
g
r
d
t

si
m
e
u
dis

th

e
ic

in
e
s
er
s
ng

i
t

re
re
a
e
oo
h

ra

(

a

er-
ve
w-
il-
ig.
in-

e

ies
e-
raged
ell

nce

t.
p-
h-
nce
lap-
ith

ic
is is
in
lly
g

ou-

ud
his
ver

o

e

PRE 61 6991PHYSICS OF THE RHYTHMIC APPLAUSE
applause! and by roughly doubling their clapping period
they shift to mode-II clapping. By this the dispersion of t
natural frequencies of the spectators reduces to half an
does also the value of theKc critical coupling. The coupling
among spectators can become in this way larger thanKc and
partial synchronization~rhythmic applause! appears.

It is clear now why synchronization appears, but the qu
tion remains: why after a time is this synchronization lo
The answer is apparent by examining the long-time avera
noise intensity curve@Fig. 2~c!#. One can realize that afte
synchronization occurs the average noise decreases an
tains its minimal value. Enthusiastic spectators are not sa
fied with this and try to increase the average noise inten
level. This is possible mainly by speeding up the rhyth
because the intensity of one clap cannot be increased ov
given level any more simply by hitting harder. Speeding
the rhythm increases the natural frequency distribution’s
persion and consequently increases by this the value ofKc .
The coupling among spectators becomes again smaller
the critical one and synchronization is lost.

The above scenario is fully supported by the analyz
signal in Fig. 2. We learn from here that during the rhythm
applause the individuals in the crowd double their clapp
period @Fig. 2~e!#, and we observe how by this action th
order parameter characterizing synchronization is increa
@Fig. 2~d!#. When the order parameter is maximum the av
age noise intensity@Fig. 2~c!# is minimum, and spectator
will increase this by increasing the frequency of clappi
shifting again to mode-II clapping.

The clapping after a good performance is frustrated
some sense. When maximal synchronization is achieved
average noise intensity is minimum due to the slow f
quency of mode-II clapping. By increasing the clapping f
quency and shifting to mode-I clapping the value of critic
coupling is increased and synchronization is lost. The sp
tators cannot achieve both maximal noise intensity and g
synchronization within the same clapping mode, and t
makes the system frustrated.

A very simple computer simulation exercise on the Ku

FIG. 5. Normalized distribution functions for the frequencies
mode-I~continuous line! and mode-II~dashed line! clapping of one
chosen individual~sampling 100 times during a one-week period!.
so

s-

ed

at-
is-
ty
,
r a
p
-

an

d

g

ed
-

n
he
-
-
l
c-
d

is

-

moto model can visualize all the above results~Fig. 6!. Con-
sidering an ensemble ofN570 globally coupled rotators
with a Gaussian distribution of their natural frequenciesv̄
52p s21, D52p/6.9 s21, andK50.8 s21) we follow up
their dynamics. We associate a very small time lengtht

50.01 s andI 05v/v̄ intensity noise for each event when
rotator passes through an integer multiple of phase 2p. The
global noise is obtained by simply adding all noises gen
ated by the individual rotators. In the given setup we ha
K,Kc , and thus no synchronization should appear. Ho
ever, att1521 s time moment we double the natural osc
lation period of each oscillator and, as is observable in F
6~a!, synchronization gradually evolves. This leads to an
crease in the order parameter@Fig. 6~c!, computed now as in
experiments after Eq.~5!#, and a decrease in the long-tim
averaged noise intensity@Fig. 6~b!#. Beginning witht2535 s
we begin to linearly increase the rotators’ natural frequenc
back to their original values. As is observable, this will d
crease again the order parameter and increase the ave
noise intensity. This computer exercise approximates w
the experimental results from Fig. 2, and gives us confide
in our analytical statements.

Some interesting comments can be made at this poin
~1! In many societies the phenomenon of rhythmic a

plause is unknown. It seems that the ‘‘game’’ of the rhyt
mic applause has to be learned by each community. O
spectators subconsciously recognize that lowering the c
ping frequency allows synchronization and get familiar w
the phenomenon, they will keep this habit alive.

~2! Usually, in huge open air concerts no clear rhythm
applause forms even after outstanding performances. Th
mainly due to the small and nonglobal coupling existing
the system~the applause of far-away spectators is tota
undetectable!. Even by reducing to half the natural clappin
frequency dispersion, it is still not possible to achieve a c
pling larger than the critical one.

~3! In communist times it was a common habit to appla
by rhythmic applause the ‘‘great leader’’ speech. During t
rhythmic applause the synchronization was almost ne

f

FIG. 6. Computer simulation of the Kuramoto model forN

570 rotators (K50.8 s21, v̄52ps21, andD52p/6.9 s21). We
double the rotators periods att1521 s and linearly increase th
frequency back to the original value fromt2535 s. The noise pulse

given by one oscillator hasI 05v/v̄ intensity andt50.01 s dura-
tion.
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lost. This is very nice evidence of the fact that spectat
were not enthusiastic enough and were satisfied with the
tained global noise intensity level, having no desire to
crease it. Frustration was not present in this system.

VI. CONCLUSIONS

By recognizing two characteristic clapping modes of t
individuals during the applause and by applying the res
of the Kuramoto model, the dynamics of the rhythmic a
plause is qualitatively understood. The rhythmic applaus
formed by lowering~roughly to half! the natural clapping
s

.

s
b-
-

ts
-
is

frequency of each individual, thereby lowering the width
the clapping frequency distribution of the audience. T
rhythmic applause is lost and might reappear again due to
two main desires of the spectators, which cannot both
fulfilled at the same time:optimal synchronizationandmaxi-
mal applause intensity. The system is frustrated in this sens
When maximal synchronization is achieved the avera
noise intensity is minimum due to the slow clapping fr
quency. When the average noise intensity is increased
increasing the clapping frequency, synchronization gets l
The interesting interplay between unsynchronized and s
chronized clapping is a consequence of this frustration.
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