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Physics of the rhythmic applause
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We report on a series of measurements aimed to characterize the development and the dynamics of the
rhythmic applause in concert halls. Our results demonstrate that while this process shares many characteristics
of other systems that are known to synchronize, it also has features that are unexpected and unaccounted for in
many other systems. In particular, we find that the mechanism lying at the heart of the synchronization process
is the period doubling of the clapping rhythm. The characteristic interplay between synchronized and unsyn-
chronized regimes during the applause is the result of a frustration in the system. All results are understandable
in the framework of the Kuramoto model.

PACS numbgs): 87.19—j, 89.90+n, 05.45.Xt, 05.65tb

[. INTRODUCTION consider the more complex problem of coupled nonidentical
oscillators.

Everybody has experienced after a good performance the For a theoretical study of coupled oscillator models many
audience showing its appreciation with a thunderous syninteraction types were studied. Considering mathematically
chronized clapping. This is suddenly arising from the ini-coupled mapg3] the problem became interesting mostly
tially incoherent clapping of individuals and might disappearfrom the viewpoint of dynamical systems and chaos. Since
and reappear again several times during the applause. Thisost of the coupling processes in nature are through pulse-
synchronization process in the concert hall offers a wonderlike interactions(firing of neurons, flashes of fireflies, clap-
ful example of social self-organization, and it is believed toping, etc) a very realistic pulselike coupling is considered in
be a human scale example of synchronization processes othte integrate-and-fire-type modg¢,5]. In these models the
served in numerous systems in nature. As detailefilin  firing of an oscillator results in a phase jump of all other
spontaneous synchronization occurs in many biological andscillators. Because the phase evolution of each oscillator is
sociological systems: fireflies in Southeast Asia synchronizeonsidered nonlinear in time, under very general conditions
their flashes; crickets synchronize their chirping; neural cellthe jumping process leads to synchronization. Interactions
of the brain synchronize voltage fluctuations; pacemakecontinuously present in time and thus memory effects are
cells in the heart synchronize their fire; women living to- considered in the models introduced by Winfrgg and
gether for long times find their menstrual cycle synchro-Kuramoto and Nishikav@7]. In these later models we have
nized. phase-difference-minimizing interactions between globally

The accepted way of modeling a synchronization processoupled rotators. For a suitably chosen interaction form, the
is to consider coupled nonlinear oscillators. Understandingroblem becomes exactly solvable and leads to very interest-
the synchronization process of coupled oscillators is an oléhg results.
problem in physics, mathematics, and theoretical biol@&jy Although at first the integrate-and-fire-type models look
It is believed that the problem goes back to Huygens, whdhe most promising to understand the synchronization and
realized the synchronization of pendulum clocks hanging todynamics of the rhythmic applause, we will argue in favor of
gether on a wall. While the synchronization of identical the phase-coupled Kuramoto model. According to our inter-
coupled oscillators interacting with phase-minimizing inter-pretation of the phenomenon in the appearance of rhythmic
actions is obvious, the problem is nontrivial if one considersapplause, memory effects are crucial. By considering the
a population of nonidentical oscillators. Depending on thepulselike interaction of integrate-and-fire models, this impor-
strength and type of the interaction, and the dispersion of th&ant ingredient is totally neglected. In contrast, the continu-
oscillators frequencies, synchronization might, or might notous phase coupling in the Kuramoto model offers a first ap-
appear. For biological populations it is crucial to considerproach to dealing with the relevant memory effects.
nonidentical internal frequencies, since individuals are not The purpose of our present paper is to reveal some inter-
rigorously equivalent. In this way in order to understand syn-esting and new peculiarities of the rhythmic applause, and to
chronization in biological or sociological systems we have tounderstand the observed phenomenon in the framework of
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the well-known Kuramoto model. Of course, in the contextKuramoto model for biological populations, the observed
of rhythmic applause the Kuramoto model should be viewedynchronization phenomena are conceptually understood.
as an abstract theoretical representation of the situation, con-

taining the minimum number of assumptions already allow-, ruyTHMIC APPLAUSE VERSUS THE KURAMOTO

ing the kind of synchronization exhibited by the spectators. MODEL: OPEN QUESTIONS
We mention that the main results of our study were briefly '
discussed in a very short recent paf@r Here we will con- As we discussed in the Introduction, it is convenient to

sider a much more detailed and argumented presentation. use the Kuramoto model in order to describe the dynamics of
the rhythmic applause. If the Kuramoto model is applicable
II. THE KURAMOTO MODEL to the phenomenon there could be two casgghe average
) ] coupling between the spectators is smaller than the critical
In order to construct a simple physical model for synchro-gne and no synchronization appears, éindfor larger cou-
nization, one can take the population of nonidentical rotator)|ing than the critical one synchronization would gradually
globally coupled through phase-difference-minimizing inter-eyglve. The critical couplingas discussed in Sec) s gov-
actions. Synchronization in this system is not obvious at albrned by the dispersion of the spectators’ natural clapping
and triggered the interesting studies of Winffé& He found  frequencieg4).
that mutual synchronization is possible or not, depending on - stydying the rhythmic applause carefully, one might im-
the relation between the oscillator frequency distributionmegiately raise many questions which are not obviously an-

width (dispersion and the strength of coupling. Later, Kura- swered within a simple application of the Kuramoto model,
moto proposed and, together with Nishikava, exactly solvedych as the following.

[7] an elegant reformulation of Winfree’s model. (i) Usually at the beginning of the applause there is a long
In the Kuramoto model we hawé rotators, each of them «yajting” time without any synchronization, and with no
described by itspx phase. The rotators havegdw) distri-  jncrease in the order parameter. Partial synchronization

bution of theirw natural frequencies. Every rotator interacts eyolves suddenly after that and achieves its maximal value in
with all the other ones via phase-difference-minimizing 5 short time. This should not be the case if we are inkhe

terms, >K. limit. One would expect in this limit a continuous in-
K N crease in the order parameter right from the beginning of the
wint— — sin( & — ' 1 applause.
KON 121 S @ (i) Why is synchronization already achieved lost after a

) ) ) - time, and why might it reappear again? Losing synchroniza-
The N coupled differential equations describing the over-tion should not happen in the¢>K_ limit.

damped oscillator dynamics are In order to understand this phenomenon more deeply and
dé K N to answer the questions that are not obvious within the
K : framework of the Kuramoto model, we first considered an
—— =wgto Sin(¢; — dy). 2 . ’
dt  “*'N E1 "(é;— o) @ experimental study.

Mathematically the synchronization level will be character-
ized by an order parametary, defined at any time moment as IV. EXPERIMENTAL STUDY
Two main experiments were considered.
3) Experiment | The applause after many good theater and
’ opera performanceg$in Romania and Hungayywas re-
corded, digitized, and analyzed in several aspects. Record-
The maximal possible valug=1 corresponds to total syn- ings both by a microphone hanging from the ceiling of the
chronization, the case<0g<1 to partial synchronization, concert hall and in the neighborhood of randomly selected
while for g=0 there is no synchronization at all in the sys- individuals were considered.
tem. Experiment Il.Well-controlled clapping experiments were
In the N— oo thermodynamic limit of the equilibrium dy- carried out on a group of 73 high school students. We also
namics (—o°, so initial transient effects are Igdturamoto  investigated the clapping frequencies of one individual dur-
and Nishikava proved the existence dfacritical coupling.  ing a one week period.
For a Gaussian distribution of the oscillators’ natural fre-
quencies, characterized byDadispersion, they gdt7]

N
%2 ei¢K

=1

q:

A. Experimental method

2 1. Experiment |

Ke= ;D' @ By digitizing the signalFig. 1(a)] we obtained a record-

ing of fluctuating voltage with both positive and negative
For K=K, the only possible solution giveg=0 (no syn- values. The zero leveéhs the mean-signal leyelvas deter-
chronization while for K>K, a stable solution witlg#0 mined and the square of the signal relative to this level was
appears. Thus, the main result is that for a population otomputedFig. 1(b)]. This signal would roughly correspond
globally coupled nonidentical oscillators a partial synchroni-to the noise intensity variation, but due to the short sampling
zation of the phases is possible whenever the interactiotime it is definitely not the one that our human perception
among oscillators exceeds a critical value. By adopting thean follow. The average over a relatively short-time period
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2. Experiment Il

In our well controlled clapping experiments we studied
the distribution function for the natural clapping frequency
of noninteracting students. Separated by the rest of the
group, students were first encouraged to clap in the manner
they would right after a good performanémode-I clap-
ping). Second, they were asked to clap in the manner they
would do during synchronized clappirighode-Il clapping.

With one student we also performed investigations on both
ways of clapping, sampling 100 times during a one-week
period.

V(arb. units)

B. Experimental results

c 1. Experiment |

L L L 1 A characteristic part of the global applause where the syn-
0 3 6 9 12 15 18 21 chronization is formed and destroyed is presented as a func-
t (s) tion of time in Fig. Za). In Fig. 2b) we present simulta-
neously the recordings made in the vicinity of one spectator.
FIG. 1. Digitized global signal, voltage as a function of tifag The order parameter variation computed by Ey.from the
The processed signalg) and(c). In (b) we have the square of the global signal is plotted in Fig.(@). In Fig. 2c) we show the
signal from(a), relative to_the caICl_JIated aver_age voIt_age level. 'nvariation of the long-time moving averageindow size: 3 §
(c) we present the short-time moving averagéndow size: 0.25 ¢4 the global noise intensity. Finally, in Fig(€@ we present
of the signal from(b). the computed clapping period as a function of time for the
chosen individual. One can notice immediately that during
(=~0.2 9 was considered and we got the sighiig. 1(c)]  the rhythmic applausécentral part the long-time averaged
that describes well the useful noise intensity variations durnoise intensity has a clear minimum, the order parameter has
ing the applause. Even at a first glance one can eaSin detegt maximum (as expecteﬁ and the C|apping period of an
the periodic noise intensity variation during synchronizedindividual presents also a maximum. These results are stable

clapping. _ _ _ and qualitatively consistent with all the 47 recordings we
This short-time averaged signal was analyzed in severalgye studied.
aspects.
(1) A long-time averaged noise intensity was computed 2. Experiment Il
by averaging the signal on a time interval of approximatel _ o .
3ys ging g PP y For the normalized distribution of the natural clapping

frequencies of the group of 73 students the results are given
in Fig. 3. With a continuous line we plotted the distribution
btained for mode-I clapping and with a dashed line we plot-
ted the results for mode-Il clapping. Both distributions are
roughly Gaussian. The maximum of the first distribution is
located at a higher frequencfapproximately two times
highepn and the peak is wider than the one for mode-II clap-
ping. Calculating the dispersion for the two distributions, we

(2) An experimentally computable order parametg,
was calculated. This order parameter was defined in a ve
analogous way with the order paramete(3) in the Kura-
moto model. At each time stefe,, is calculated as the
maximum of the normalized correlation between &{¢)
signal and a harmonic function

4T . . : . )
f s(t)sin(2a/ T+ ¢)dt got t&th the dlspersm(D)_ and the relative dispersiorD(
-T =D/ w) for mode-II clapping smaller,
qexp(t):max{T,d)} T )
f s(t)dt D, ”s ®
t—-T —~2.5,

Dy

(in the above formula the values @f should span all pos- D'
sible initial phases between 0 andr2and T should vary — 13 (7

between two reasonably chosen limiting valu&s,,, and I
Tmax). TakingTpj,=0.1 s andl ,4,=5 SQexp WasS NnuUMeri-
cally computed. Computing the normalized distribution for the ratio of
(3) Finally, for recordings taken in the neighborhood of mode-I to mode-II clapping for each individual we got also a
one spectator one can observe that the short-time averagede-peak distribution centered around the value (¥ig. 4).
noise intensity curves have some evident local maximums The normalized distribution of mode-I and mode-II clap-
corresponding to the clapping of the individual. In this caseping obtained from 100 measurements on one individual
we computed the time interval between the clearly distin{Fig. 5 shows a behavior similar to the one presented in Fig.
guishable groups of maxima as a function of time. This will4. We plotted with a continuous line the normalized distri-
characterize the clapping frequency of the chosen spectatabution obtained for mode-I clapping and with a dashed line
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we plotted the one for mode-Il clapping. The distribution of process the dispersiofwidth) of the natural clapping fre-
possible natural frequencies during mode-Il clapping is agaimuency distribution is decreased roughly to half. This is a
sharper than the one for mode-I clapping. Again, the locatiorvery important step in understanding the phenomenon from
of the maxima for the distribution of mode-I clapping is the viewpoint of the Kuramoto model. From the Kuramoto
roughly double the one for mode-II clapping.

From the controlled clapping experimertfgs. 3—5 we

V. DISCUSSION

model we learned that the critical couplikg. for synchro-
nization is directly proportional with the dispersion of the
frequency distribution of the oscillatof@). When the dis-
persion is decreased the value of the critical coupling de-
creases, too. When the clapping starts the spectators clap

conclude that spectators can clap with two very distinct clapvery enthusiastically and with high frequenciesode-I clap-
ping modes. During rhythmic applause they shift from theirping). The frequency distribution is wide and the value of the
original high frequency mode-I clapping to the low fre- critical coupling is large. The coupling between the specta-
guency mode-Il clapping. The above picture is totally sup-tors is lower than the critical value and synchronization is
ported by the clapping rhythm of one individual during the not possible. The spectators subconsciously realize(this
rhythmic applausdFig. 2€)]. During this period-doubling already subconsciously know the “game” of the rhythmic
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1.0 15 2.0 25 3.0 35 4.0 =70 rotators K=0.8 s 1, w=27s"1, andD=27/6.9 s 1). We

f(1/s) double the rotators periods &=21 s and linearly increase the

FIG. 5. Normalized distribution functions for the frequencies of frequency back to the original value frag=35 s. The noise pulse

mode-I(continuous ling and mode-I(dashed lingclapping of one ~ given by one oscillator haky= v/« intensity andr=0.01 s dura-
chosen individualsampling 100 times during a one-week pejiod ton.

. . . . moto model can visualize all the above resgfg. 6). Con-
applausg and by roughly doubling their clapping periods sidering an ensemble dfi=70 globally coupled rotators

they shift to mode-Il clapping. By this the dispersion of the =" i R . s
natural frequencies of the spectators reduces to half and ¥th a Gaussian distribution of their natural frequencies (
does also the value of th¢, critical coupling. The coupling =27 S ', D=27/6.9 s'!, andK=0.8 s'*) we follow up
partial synchronizatiorirhythmic applauseappears. =0.01 s and y= w/ w intensity noise for each event when a

It is clear now why synchronization appears, but the quesrotator passes through an integer multiple of phase Phe
tion remains: why after a time is this synchronization lost?global noise is obtained by simply adding all noises gener-
The answer is apparent by examining the long-time averageated by the individual rotators. In the given setup we have
noise intensity curvgFig. 2(c)]. One can realize that after K<K., and thus no synchronization should appear. How-
synchronization occurs the average noise decreases and atrer, att;=21 s time moment we double the natural oscil-
tains its minimal value. Enthusiastic spectators are not satidation period of each oscillator and, as is observable in Fig.
fied with this and try to increase the average noise intensity(a), synchronization gradually evolves. This leads to an in-
level. This is possible mainly by speeding up the rhythm,crease in the order parame{€ig. 6(c), computed now as in
because the intensity of one clap cannot be increased overexperiments after Eq5)], and a decrease in the long-time
given level any more simply by hitting harder. Speeding upaveraged noise intensifffig. 6(b)]. Beginning witht,=35 s
the rhythm increases the natural frequency distribution’s diswe begin to linearly increase the rotators’ natural frequencies
persion and consequently increases by this the vald€.of back to their original values. As is observable, this will de-
The coupling among spectators becomes again smaller thamease again the order parameter and increase the averaged
the critical one and synchronization is lost. noise intensity. This computer exercise approximates well

The above scenario is fully supported by the analyzedhe experimental results from Fig. 2, and gives us confidence
signal in Fig. 2. We learn from here that during the rhythmicin our analytical statements.
applause the individuals in the crowd double their clapping Some interesting comments can be made at this point.
period [Fig. 2(e)], and we observe how by this action the (1) In many societies the phenomenon of rhythmic ap-
order parameter characterizing synchronization is increasgalause is unknown. It seems that the “game” of the rhyth-
[Fig. 2d)]. When the order parameter is maximum the averimic applause has to be learned by each community. Once
age noise intensityFig. 2(c)] is minimum, and spectators spectators subconsciously recognize that lowering the clap-
will increase this by increasing the frequency of clappingping frequency allows synchronization and get familiar with
shifting again to mode-II clapping. the phenomenon, they will keep this habit alive.

The clapping after a good performance is frustrated in (2) Usually, in huge open air concerts no clear rhythmic
some sense. When maximal synchronization is achieved thepplause forms even after outstanding performances. This is
average noise intensity is minimum due to the slow fre-mainly due to the small and nonglobal coupling existing in
quency of mode-Il clapping. By increasing the clapping fre-the system(the applause of far-away spectators is totally
guency and shifting to mode-I clapping the value of criticalundetectable Even by reducing to half the natural clapping
coupling is increased and synchronization is lost. The spedrequency dispersion, it is still not possible to achieve a cou-
tators cannot achieve both maximal noise intensity and googling larger than the critical one.
synchronization within the same clapping mode, and this (3) In communist times it was a common habit to applaud
makes the system frustrated. by rhythmic applause the “great leader” speech. During this

A very simple computer simulation exercise on the Kura-rhythmic applause the synchronization was almost never
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lost. This is very nice evidence of the fact that spectatorgrequency of each individual, thereby lowering the width of
were not enthusiastic enough and were satisfied with the oldhe clapping frequency distribution of the audience. The
tained global noise intensity level, having no desire to in-rhythmic applause is lost and might reappear again due to the
crease it. Frustration was not present in this system. two main desires of the spectators, which cannot both be
fulfilled at the same timeoptimal synchronizatioandmaxi-
mal applause intensityThe system is frustrated in this sense.
When maximal synchronization is achieved the average
By recognizing two characteristic clapping modes of thenoise intensity is minimum due to the slow clapping fre-
individuals during the applause and by applying the resultguency. When the average noise intensity is increased by
of the Kuramoto model, the dynamics of the rhythmic ap-increasing the clapping frequency, synchronization gets lost.
plause is qualitatively understood. The rhythmic applause iFhe interesting interplay between unsynchronized and syn-
formed by lowering(roughly to halj the natural clapping chronized clapping is a consequence of this frustration.

VI. CONCLUSIONS
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